Machine learning approaches for estimating interfacial tension between oil/gas and

  • Bui, T. et al. Water/oil interfacial tension reduction—An interfacial entropy driven process. JPCCP 23(44), 25075–25085 (2021).

    ADS 

    Google Scholar
     

  • Kalam, S., Khan, M. R., Shakeel, M., Mahmoud, M. & Abu-khamsin, S. Smart Algorithms for Determination of Interfacial Tension (IFT) Between Injected Gas and Crude Oil-Applicable to EOR Projects (Middle East Oil, Gas and Geosciences Show/OnePetro, 2023).


    Google Scholar
     

  • Garmsiri, H. et al. Stability of the emulsion during the injection of anionic and cationic surfactants in the presence of various salts. Sci. Rep. 13(1), 11337 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shafiei, M., Kazemzadeh, Y., Martyushev, D. A., Dai, Z. & Riazi, M. Effect of chemicals on the phase and viscosity behavior of water in oil emulsions. Sci. Rep. 13(1), 4100 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalatehno, J. M. & Khamehchi, E. A novel packer fluid for completing HP/HT oil and gas wells. J. Petrol. Sci. Eng. 203, 108538 (2021).


    Google Scholar
     

  • Drexler, S., Hoerlle, F., Godoy, W., Boyd, A. & Couto, P. Wettability alteration by carbonated brine injection and its impact on pore-scale multiphase flow for carbon capture and storage and enhanced oil recovery in a carbonate reservoir. Appl. Sci. 10(18), 6496 (2020).


    Google Scholar
     

  • Hamidpour, S., Safaei, A., Kazemzadeh, Y., Hasan-Zadeh, A. & Khormali, A. Calculation of IFT in porous media in the presence of different gas and normal alkanes using the modified EoS. Sci. Rep. 13(1), 8077 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalatehno, J. M., Khamehchi, E., Abbasi, A. & Khaleghi, M. R. A novel approach to determining appropriate additive concentrations for stimulation of gas carbonate reservoirs. Results Eng. 20, 101440 (2023).


    Google Scholar
     

  • Hou, X. & Sheng, J. J. Experimental study on the effects of IFT reduction and shut-in on water blockage after hydraulic fracturing in tight sandstone reservoirs based on the NMR method. Energy Fuels. 37(9), 6569–6584 (2023).


    Google Scholar
     

  • Pereira, L. M., Chapoy, A., Burgass, R. & Tohidi, B. Interfacial tension of CO2+ brine systems. Exp. Predict. Model. 103, 64–75 (2017).


    Google Scholar
     

  • Kim, B. et al. Ensemble machine learning-based approach for predicting of FRP-concrete interfacial bonding. Mathematics 10(2), 231 (2022).


    Google Scholar
     

  • Tadros, T. Gibbs adsorption isotherm. In Encyclopedia of Colloid and Interface Science (Tadros, T. ed.). 626 (Springer, 2013).

  • Sibanda, D., Oyinbo, S. T. & Jen, T.-C. A review of atomic layer deposition modelling and simulation methodologies: Density functional theory and molecular dynamics. Nanotechnol. Rev. 11(1), 1332–1363 (2022).


    Google Scholar
     

  • Singh, S. K., Chaurasia, A. & Verma, A. Basics of Density Functional Theory, Molecular Dynamics, and Monte Carlo Simulation Techniques in Materials Science. In Coating Materials: Computational Aspects, Applications and Challenges (eds Verma, A. et al.) 111–124 (Springer, 2023).


    Google Scholar
     

  • Zhao, X., Duan, W., Zeng, X. & Liu, Y. J. Measurements of surface tension of R1234yf and R1234ze (E). Int. J. Refrig. 63(1), 21–26 (2018).


    Google Scholar
     

  • Clegg, C. Contact Angle Made Easy: Carl Clegg (2013).

  • DA. Standard Test Methods for Surface and Interfacial Tension of Solutions of Paints, Solvents, Solutions of Surface-Active Agents, and Related Materials. Annual Book of ASTM Standards. (American Society for Testing and Materials, 2014).

  • Gupta, A., Pandey, A., Kesarwani, H., Sharma, S. & Saxena, A. Automated determination of interfacial tension and contact angle using computer vision for oil field applications. J. Petrol. Explor. Prod. Technol. 12(5), 1453–1461 (2022).


    Google Scholar
     

  • Esteghlal, S., Samadi, S. H., Hosseini, S. M. H. & Moosavi-Movahedi, A. A. Identification of machine learning neural-network techniques for prediction of interfacial tension reduction by zein based colloidal particles. Ind. Eng. Chem. Res. 36, 106546 (2023).


    Google Scholar
     

  • Dargi, M., Khamehchi, E. & Mahdavi, K. J. Optimizing acidizing design and effectiveness assessment with machine learning for predicting post-acidizing permeability. Sci. Rep. 13(1), 11851 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zamani, M. G., Nikoo, M. R., Rastad, D. & Nematollahi, B. A comparative study of data-driven models for runoff, sediment, and nitrate forecasting. J. Environ. Manag. 341, 118006 (2023).


    Google Scholar
     

  • Khamehchi, E., Dargi, M., Imeri, M., Kalatehno, J.M. & Khaleghi, M.R. Pipe Diameter Optimization and Two-Phase Flow Pressure Drop in Seabed Pipelines: A Genetic Algorithm Approach.

  • Ahmadi, M. A. & Mahmoudi, B. Development of robust model to estimate gas–oil interfacial tension using least square support vector machine: Experimental and modeling study. J. Supercrit. Fluids 107, 122–128 (2016).


    Google Scholar
     

  • Andersson, M., Eckert, F., Reinisch, J. & Klamt, A. Prediction of aliphatic and aromatic oil–water interfacial tension at temperatures > 100 °C using COSMO-RS. Fluid Phase Equilib. 476, 25–29 (2018).


    Google Scholar
     

  • Amar, M. N., Shateri, M., Hemmati-Sarapardeh, A. & Alamatsaz, A. Modeling oil-brine interfacial tension at high pressure and high salinity conditions. J. Petrol. Sci. Eng. 183, 106413 (2019).


    Google Scholar
     

  • Dehaghani, A. H. S. & Soleimani, R. Estimation of interfacial tension for geological CO2 storage. Chem. Eng. Technol. 42(3), 680–689 (2019).


    Google Scholar
     

  • Kirch, A., Celaschi, Y. M., de Almeida, J. M. & Miranda, C. R. Brine–oil interfacial tension modeling: Assessment of machine learning techniques combined with molecular dynamics. ACS Appl. Mater. Interfaces 12(13), 15837–15843 (2020).

    PubMed 

    Google Scholar
     

  • Zhang, J., Feng, Q. & Zhang, X. (eds.) The use of machine learning methods for fast estimation of CO2-brine interfacial tension: A comparative study. In Proceedings of the 2020 5th International Conference on Machine Learning Technologies (2020).

  • Amar, M. N. Towards improved genetic programming based-correlations for predicting the interfacial tension of the systems pure/impure CO2-brine. J. Taiwan Inst. Chem. Eng. 127, 186–196 (2021).


    Google Scholar
     

  • Cui, Z. & Li, H. Toward accurate density and interfacial tension modeling for carbon dioxide/water mixtures. Petrol. Sci. 18, 509–529 (2021).


    Google Scholar
     

  • Setiawan, R., Daneshfar, R., Rezvanjou, O., Ashoori, S. & Naseri, M. Surface tension of binary mixtures containing environmentally friendly ionic liquids: Insights from artificial intelligence. Environ. Dev. Sustain. 23, 17606–17627 (2021).


    Google Scholar
     

  • Bui, T. et al. Water/oil interfacial tension reduction—An interfacial entropy driven process. Phys. Chem. Chem. Phys. 23(44), 25075–25085 (2021).

    PubMed 

    Google Scholar
     

  • Yang, Y., Che Ruslan, M. F. A., Narayanan Nair, A. K., Qiao, R. & Sun, S. Interfacial properties of the hexane+ carbon dioxide+ water system in the presence of hydrophilic silica. J. Chem. Phys. 157(23), 37 (2022).


    Google Scholar
     

  • Seddon, D., Müller, E. A. & Cabral, J. T. Machine learning hybrid approach for the prediction of surface tension profiles of hydrocarbon surfactants in aqueous solution. J. Colloid Interface Sci. 625, 328–339 (2022).

    ADS 
    PubMed 

    Google Scholar
     

  • Nikseresht, S., Farshchi Tabrizi, F., Riazi, M., Torabi, F. & Hashemi, S. H. Thermodynamic prediction of interfacial tension of water/oil system with the presence surfactants and salt. Model. Earth Syst. Environ. 8(2), 2193–2199 (2022).


    Google Scholar
     

  • Mahdaviara, M., Amar, M. N., Ostadhassan, M. & Hemmati-Sarapardeh, A. On the evaluation of the interfacial tension of immiscible binary systems of methane, carbon dioxide, and nitrogen-alkanes using robust data-driven approaches. Alex. Eng. J. 61(12), 11601–11614 (2022).


    Google Scholar
     

  • Wang, Y., Shardt, N., Elliott, J. A. & Jin, Z. Highly efficient and accurate gas-alkane binary mixture interfacial tension equations for a broad range of temperatures, pressures, and compositions. SPE J. 27(01), 895–913 (2022).


    Google Scholar
     

  • Ng, C. S. W., Djema, H., Amar, M. N. & Ghahfarokhi, A. J. Modeling interfacial tension of the hydrogen-brine system using robust machine learning techniques: Implication for underground hydrogen storage. Int. J. Hydrogen Energy 47(93), 39595–39605 (2022).


    Google Scholar
     

  • Rashidi-Khaniabadi, A., Rashidi-Khaniabadi, E., Amiri-Ramsheh, B., Mohammadi, M.-R. & Hemmati-Sarapardeh, A. Modeling interfacial tension of surfactant–hydrocarbon systems using robust tree-based machine learning algorithms. Sci. Rep. 13(1), 10836 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gbadamosi, A. et al. New-generation machine learning models as prediction tools for modeling interfacial tension of hydrogen-brine system. Int. J. Hydrogen Energy 50, 4 (2023).


    Google Scholar
     

  • Mouallem, J., Raza, A., Glatz, G., Mahmoud, M. & Arif, M. Estimation of CO2-brine interfacial tension using machine learning: implications for CO2 geo-storage. J. Mol. Liq. 356, 123672 (2023).


    Google Scholar
     

  • Jo, J.-M. Effectiveness of normalization pre-processing of big data to the machine learning performance. J. Korea Inst. Electron. Commun. Sci. 14(3), 547–552 (2019).


    Google Scholar
     

  • Carey, C., Boucher, T., Mahadevan, S., Bartholomew, P. & Dyar, M. Machine learning tools formineral recognition and classification from Raman spectroscopy. J. Raman Spectrosc. 46(10), 894–903 (2015).

    ADS 

    Google Scholar
     

  • Al Shalabi, L. & Shaaban, Z. (eds.) Normalization as a preprocessing engine for data mining and the approach of preference matrix. In 2006 International Conference on Dependability of Computer Systems (IEEE, 2006).

  • Talebkeikhah, M., Sadeghtabaghi, Z. & Shabani, M. A comparison of machine learning approaches for prediction of permeability using well log data in the hydrocarbon reservoirs. J. Hum. Earth Future 2(2), 82–99 (2021).


    Google Scholar
     

  • Pan, J., Zhuang, Y. & Fong, S. (eds.) The impact of data normalization on stock market prediction: using SVM and technical indicators. In Soft Computing in Data Science: Second International Conference, SCDS 2016, Kuala Lumpur, Malaysia, September 21–22, 2016, Proceedings 2 (Springer, 2016).

  • Peiro Ahmady Langeroudy, K., Kharazi Esfahani, P. & Khorsand Movaghar, M. R. Enhanced intelligent approach for determination of crude oil viscosity at reservoir conditions. Sci. Rep. 13(1), 1666 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dargahi-Zarandi, A., Hemmati-Sarapardeh, A., Shateri, M., Menad, N. A. & Ahmadi, M. Modeling minimum miscibility pressure of pure/impure CO2-crude oil systems using adaptive boosting support vector regression: Application to gas injection processes. J. Petrol. Sci. Eng. 184, 106499 (2020).


    Google Scholar
     

  • Ng, C. S. W., Ghahfarokhi, A. J. & Amar, M. N. Well production forecast in Volve field: Application of rigorous machine learning techniques and metaheuristic algorithm. J. Petrol. Sci. Eng. 208, 109468 (2022).


    Google Scholar
     

  • Talebkeikhah, M. et al. Experimental measurement and compositional modeling of crude oil viscosity at reservoir conditions. J. Taiwan Inst. Chem. Eng. 109, 35–50 (2020).


    Google Scholar
     

  • Nait Amar, M. & Zeraibi, N. A combined support vector regression with firefly algorithm for prediction of bottom hole pressure. SN Appl. Sci. 2(1), 23 (2020).


    Google Scholar
     

  • Amar, M. N., Zeraibi, N. & Jahanbani, G. A. Applying hybrid support vector regression and genetic algorithm to water alternating CO2 gas EOR. Greenh. Gases Sci. Technol. 10(3), 613–630 (2020).


    Google Scholar
     

  • Sethi, A. Support vector regression tutorial for machine learning. Stat. Comput. 14, 1–5 (2020).


    Google Scholar
     

  • Zamani, M. G. et al. A multi-model data fusion methodology for reservoir water quality based on machine learning algorithms and bayesian maximum entropy. J. Clean. Prod. 416, 137885 (2023).


    Google Scholar
     

  • Danesh, A., Ehsani, M., Moghadas Nejad, F. & Zakeri, H. Prediction model of crash severity in imbalanced dataset using data leveling methods and metaheuristic optimization algorithms. Int. J. Crashworthin. 27(6), 1869–1882 (2022).


    Google Scholar
     

  • Rashidi-Khaniabadi, A., Rashidi-Khaniabadi, E., Amiri-Ramsheh, B., Mohammadi, M.-R. & Hemmati-Sarapardeh, A. Modeling interfacial tension of surfactant-hydrocarbon systems using robust tree-based machine learning algorithms. Sci. Rep. 13(1), 10836 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Safaei-Farouji, M. et al. Application of robust intelligent schemes for accurate modelling interfacial tension of CO2 brine systems: Implications for structural CO2 trapping. Fuel 319, 123821 (2022).


    Google Scholar
     

  • Ehsani, M., Moghadas Nejad, F. & Hajikarimi, P. Developing an optimized faulting prediction model in jointed plain concrete pavement using artificial neural networks and random forest methods. Int. J. Pavement Eng. 24, 1–16 (2022).


    Google Scholar
     

  • Smith, P. F., Ganesh, S. & Liu, P. A comparison of random forest regression and multiple linear regression for prediction in neuroscience. J. Neurosci. Methods 220(1), 85–91 (2013).

    PubMed 

    Google Scholar
     

  • Zhang, D. et al. A data-driven design for fault detection of wind turbines using random forests and XGboost. IEEE Access 6, 21020–21031 (2018).


    Google Scholar
     

  • Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet 

    Google Scholar
     

  • Wu, J., Li, Y. & Ma, Y. (eds.) Comparison of XGBoost and the neural network model on the class-balanced datasets. In 2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer (ICFTIC) (IEEE, 2021).

  • Chen, T. & Guestrin, C. (eds.) Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016).

  • Larestani, A., Mousavi, S. P., Hadavimoghaddam, F. & Hemmati-Sarapardeh, A. Predicting formation damage of oil fields due to mineral scaling during water-flooding operations: Gradient boosting decision tree and cascade-forward back-propagation network. J. Petrol. Sci. Eng. 208, 109315 (2022).


    Google Scholar
     

  • Dorogush, A.V., Ershov, V. & Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv Preprint arXiv:181011363 (2018).

  • Huang, G. et al. Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions. J. Hydrol. 574, 1029–1041 (2019).

    ADS 

    Google Scholar
     



  • This article was originally published by a www.nature.com . Read the Original article here. .